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In previous work we have developed a general method for casting stochastic
partial differential equations (SPDEs) into a functional integral formalism, and
have derived the one-loop effective potential for these systems. In this paper we
apply the same formalism to a specific field theory of considerable interest, the
reaction-diffusion-decay system. When this field theory is subject to white noise
we can calculate the one-loop effective potential (for arbitrary polynomial reac-
tion kinetics) and show that it is one-loop ultraviolet renormalizable in 1, 2, and
3 space dimensions. For specific choices of interaction terms the one-loop renor-
malizability can be extended to higher dimensions. We also show how to include
the effects of fluctuations in the study of pattern formation away from equi-
librium, and conclude that noise affects the stability of the system in a way
which is calculable.
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1. INTRODUCTION

Geometrical patterns are ubiquitous: From galaxies to living systems,
examples abound where a particular spatial distribution of some material
is preferred versus others out of a seemingly unlimited variety. In many
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cases, these patterns are successfully described by systems of coupled
parabolic non-linear partial differential equations. This is the case, for
example, in chemical kinetics, where such equations summarize the space-
time evolution of chemical species diffusing and reacting in some confined
geometrical region, which makes its presence felt in the boundary condi-
tions for the problem. In this way chemical kinetics helps one to under-
stand leopard spots, zebra bands or the radial structure of Acetabularia.
(See Murray,V Walgraef,® and Ball®® for discussions of many specific
examples. Useful background references include van Kampen™ and
Gardiner.®) In these phenomena the values of “reaction constants” play a
role which reminds one of the role played by coupling constants in deter-
mining the vacuum (or ground) state in a quantum field theory undergoing
spontaneous symmetry breaking, or in the description of phase transitions
in condensed matter systems. This is not surprising, since in the presence
of spatial non-equilibrium patterns® “it is often the case that the con-
tinuous symmetry of the system becomes spontaneously broken.” Because
of the above, two questions come immediately to mind: (a) what is the
effect on an existing pattern of the elimination of fast degrees of freedom?
and, (b) how do fluctuations affect the stability of an established pattern?
These two questions are, of course, formally related since both phenomena
manifest themselves through noise added to the otherwise deterministic
equations describing the formation of these patterns. Providing answers to
these questions opens the door to the study of complex phenomena where
either there is no precise explicit knowledge of many of the microscopic
details, or else where unexpected external perturbations and disturbances
show up, and one is nevertheless interested in an explicit understanding of
the system at long wavelengths. An example is in population ecology,
where the presence of illegal hunting, or the accidental introduction of
some (apparently minor) contaminant, can produce major ecological shifts.

The most appropriate tool to study patterns of symmetry is, of course,
the notion of a potential. If some notion of potential is available, then
analysis of its extrema leads to the identification of the stable and meta-
stable vacua for the system. From there, given the values of the couplings
in the system, one determines the ground state for the system. This analysis
is performed in equilibrium, but the problem in pattern formation, or in
reaction-diffusion systems, is that these systems are away from equilibrium,
often far away from equilibrium, and the usual notion of “potential,”
“vacuum state,” and allied concepts are no longer available. Recently,
however, we have introduced” a notion of “effective potential” which
generalizes the standard (Quantum Field Theory) notion of an effective
potential to systems away from equilibrium. The generalization (as dis-
cussed below) is such that a very clean and clear parallel can be established
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with the situation in Quantum Field Theory, and a potential is constructed
which has two major and distinct pieces: a “classical” contribution and a
“fluctuation” contribution. The “classical” contribution plus the “fluctua-
tion” contribution determine the “vacuum state” of the system, and therefore
this effective potential allows the calculation of the effects of the fluctuations
on the ground state of the system. The “minimalist formalism” we developed
in ref. 7 is to be contrasted with the traditional Martin—Siggia—Rose
(MSR) formalism with its additional conjugate fields.®® One difference
between the MSR approach and the “minimalist formalism” can be imme-
diately appreciated at a calculational level, in terms of the structure of the
diagramatic Feynman rules (see Appendix C). Each approach has its own
advantages and disadvantes depending on the particular application one
has in mind. For the purposes of calculating the effective potential, we have
found the minimal formalism best suited for the task. The minimalist formalism
is an extension and outgrowth of the Onsager-Machlup approach,% !V
and exhibits similarities to the analysis of Crisanti and Marconi.!?

The fluctuation dependent piece of the potential involves integrations
over the frequency and momentum domains. These integrals require the
introduction of a cutoff, which, through a Wilsonian-style procedure, leads
to a scale-dependence of the parameters of the reaction-diffusion-decay
system; and therefore has an effect on the type of instability (and associated
patterns) which controls the behavior of the system. The full “effective
potential” then constitutes a superb tool to incorporate the effects of non-
linearities and fluctuations in the patterns produced by systems away from
equilibrium of the reaction-diffusion type.

In this paper, after a brief discussion of the “effective potential” in
general, and a description of how the noise amplitude plays the role of a
loop counting parameter, we specialize to the case of real reaction-diffu-
sion-decay systems subject to real additive noise. The “potential” is
calculated for d=0, 1, 2, and 3 spatial dimensions, and the special case of
monomial interactions is given separate treatment. We also provide spe-
cialized discussions for higher dimensions and general colored noises. Then,
as an application of the previous results, we study the effects of Gaussian
white noise in both Hopf and Turing bifurcations by computing appro-
priate quantities without fluctuations and with fluctuations. We find that
the effect of noise is to shift the symmetric states of the system, as well as
to change the nature of the linear instabilities that may occur as perturba-
tions around these new states. We end by offering some conclusions.

To fix the notation: In a companion paper,”’ we discussed classical field
theories subject to additive stochastic noise #(X, ¢) described by the equation

D§(x, 1) = F[$(X, 1)] + (%, 1) (1)
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Here D is any linear differential operator, involving arbitrary time and
space derivatives, that does not explicitly involve the field ¢. The function
F[ ¢1] is any forcing term, generally nonlinear in the field ¢. These stochastic
partial non-linear differential equations (SPDEs) can be studied using a
functional integral formalism which makes manifest the deep connections
with quantum field theories (QFTs). Methods of quantum field theory have
been sucessfully applied before to classical statistical systems out of equi-
librium, but in other contexts and with other objectives in mind. A method
has been developed that takes a classical master equation to a continuum
field theory.('*!> This second-quantized formalism requires detailed
knowledge of the microcoscopic master equation, and its “end-product” is
the stochastic PDE for the coarse-grained degrees-of-freedom and the noise
correlation functions.!¢2V In our approach, on the other hand, we start off
with the stochastic PDE plus the “a priori given” noise correlation func-
tions and apply field theory methods to map this phenomenological equa-
tion to a generating functional which allows us to define the effective action
and the effective potential, which is the main objective of the present paper.

In ref. 7 we showed that if the noise is translation-invariant and
Gaussian, it is possible to split its two-point function into an amplitude o/
and a shape function g,(x, y), as follows

G,(x, ) E Agy(x—) (2)

with the convention that
[adedrgs (% 0 =1=g;'(k=0,0=0) (3)

Then the one-loop effective potential for the SPDE is‘”
d% dw
(27Z)d+1

_ &k, @) F[$1(5*F/5¢ 5¢) }
(DY(k, @) = (9F/6¢)")(D(K, @) = (6F/04))

— (¢ = o) + O(#?) (4)

Here ¢, is any convenient background field. The above result is quali-
tatively similar to the one-loop effective potential for scalar QFT: (%29

PLb bl =5 L9145 |

xln{l-ﬁ-

TL¢: dol=V(g) +5 hf kfﬂn[ M}—W—%HOM%

(3)
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as can be seen by simply comparing Egs. (4) and (5). Moreover, as argued
in ref. 7, this effective potential for SPDEs inherits many of the interesting
features of the effective potential for QFTs. In particular, minima of the
effective potential for a given SPDE correspond to homogeneous and static
solutions of the stochastic equations of motion (that is, homogeneous and
static expectation values of the stochastically driven field ¢, with the
averaging done with respect to noise realizations).(”

In a second paper,®?® we applied this formalism to the Kardar—Parisi—
Zhang (KPZ) equation (relevant in the study of surface growth phenomena
and cosmological large-scale structure formation) obtaining an interesting
ground state structure (including dynamical symmetry breaking). In the
current paper we perform a similar analysis for the reaction-diffusion-decay
system described by the equation:

0 -
(5-392) 6 =Po= 194 P9 41 ©)

This equation can be used, for instance, as a model to describe the
dynamics and spatial distribution of the concentration of a chemical
reagent, when it is subject to both diffusion (via v) and decay (via y). P(¢)
is some ultra-local function of the concentration (typically a polynomial
in the concentration, but not always) and it represents the reaction
kinetics.!>) However, it appears that this equation might not be phenom-
enologically suitable for modelling pair-reaction kinetics (i.e., ¢ +¢ — 0),
since the stochastic PDE that is derived from the microscopic master equa-
tion is complex and contains imaginary noise.!% 17 On the other hand, for
standard Gribov processes (particle clustering reactions) one derives a real
stochastic PDE with real additive noise. We therefore see that the class
considered in (6) still covers a wide range of interesting phenomena.

We have included a “tadpole term” P, since, as we will see, its
presence is essential for the consistency of the ultraviolet renormalization
program. Many examples of reaction-diffusion equations abound in the
literature. By way of example, we mention just two model equations that
the reader may wish to keep in mind. One goes under the name of
“amplitude equation,” generally complex, resulting from reducing a (non-
stochastic) reaction-diffusion equation in the vicinity of an instability point:

0,A=vW2A4+ f(|4|*) A4 (7)
where the diffusion coefficient can be complex: v=vg+iv,. The study of

amplitude equations is very useful for determining the basic geometry of
patterns that can emerge near the instability point.** This equation
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clearly involves only one field degree of freedom, but the generalization is
straightforward. For several species of, e.g., chemical reactant the field
(concentration) ¢ is promoted to a vector ¢;(X, ¢). The diffusion coefficient
and decay rate are then promoted to matrices, the noise to a vector, and
the reaction kinetic function P(¢) to a vector-valued functional with ten-
sorial coefficients.

0 . )
<5i/at—vi’ V2> ¢j:(P0)i_Vij¢j+Pi(¢j)+77i (8)

Typical examples of this sort involving two components go under the head-
ing of “activator-inhibitor” models of e.g., biological pattern formation,
a noise-free example of which is provided by the Gierer—-Meinhardt
mechanism:

kyA?
B
0,B=DyV?4+k,A*—ksB (10)

0,A=D V?A+k,—k, A+

9)

Here ¢, = A is the activator and ¢, = B is the inhibitor. The k; are reaction
constants.

Finally, we note that these systems provide a viable framework for the
notion of “self-organizing systems.”

The remainder of this paper is organized as follows. In Section 2,
following the general procedure developed in ref. 7, we construct the com-
plete one-loop effective potential for the class of reaction-diffusion equa-
tions in (6). Once this is done, we carry out a detailed analysis of the
resulting potential as a function of spatial dimension for d=0, 1, 2, 3. We
keep the analysis as general as possible and calculate the effective potential
for arbitrary reaction polynomials and in arbitrary spatial dimensions. Spe-
cialization to concrete reaction kinetics is immediate by substituting in a
specific form for the polynomial, and choosing the space dimension. Special
attention is also paid to monomial interactions, the case of higher spatial
dimensions, and the case of correlated Gaussian noise. In Section 3 we turn
to a discussion of the impact that noise and fluctuations can have on the
onset of instabilities and pattern formation. We conclude in Section 4 with
a discussion of our results. Certain technical issues having to do with func-
tional Jacobian determinants are collected in Appendixes A and B. The
general Feynman rules for the reaction-diffusion equation (6) are presented
in Appendix C. An integral needed in the computation of the one-loop
effective potential is calculated in Appendix D. Finally, it should be borne
in mind that the main body of the paper adopts the so-called Stratonovich
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calculus—Appendix E indicates the changes that are required if one wishes
to consider the so-called Ito calculus.

2. EFFECTIVE POTENTIAL: REACTION-DIFFUSION-DECAY
SYSTEMS

We begin this section by computing the one-loop effective potential
associated to the class of reaction-diffusion equations (6). We first carry
out the computations for arbitrary Gaussian noise and arbitrary spatial
dimension, only later specializing to white Gaussian noise and examining
the particular features of the effective potential for dimensions d=0, 1, 2, 3.

To avoid unnecessary clutter, let us re-write Eq. (6) as

(5997 ) =P+ (1)
Here P(¢) is an arbitrary polynomial in the field ¢. Any tadpole contribu-
tion P,, as well as any decay term —y¢, have now for convenience been
subsumed into P(¢).

To apply the general analysis provided in ref. 7, which led to
Egs. (1)-(4) above, to a homogeneous and static background field, ¢(X, )
= constant, we simply make the identifications

SF CF
FII=POE s POE s Pe) - (12)

as follows by comparing Egs. (1) and (11). At tree-level (zero-loop) in the
loop-counting parameter .o/, the equations of motion become”

P) T
%F[(M —J > P(§) P()=J (13)

This is a polynomial equation for ¢ and therefore has a finite number of
roots. In particular, for J=0 let ¢, be one of the roots of P'(¢) P(¢)=0.
This polynomial always has at least one real root. [ Proof: let P(¢) be of
degree n, then P*(¢) is of degree 2n, and P'(¢) P(¢) is of degree 2n—1,
which is always odd. Thus P'(¢) P(¢) must cross the abscissa at least once,
so there must be at least one real zero. ]

The zero-loop effective potential is now

Wz‘ero—loop[qb; ¢0] = %[P2(¢) - P2(¢0)] (14)
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This zero-loop effective potential is both a generalization (because it includes
the effects of non-linearities) and a specialization (because it treats static
fields) of the Onsager—Machlup action for stochastic mechanics.”> 1% 11 We
start the one-loop computation by noting that for the reaction-diffusion-
decay system the linear differential operator needed is given by

D—%za,—sz—P’(q’)) - —iw+vk*—P'(¢) (15)
in configuration and Fourier variables. We then have for the adjoint

quantity

T _} —
DT_éaif):_at—sz—P'(fﬁ) - Fio+vk?=P(¢)  (16)

so that
.
<D*—Z><D—§;>= —0 DYV P ()]
S e+ DR P()]? (17)

Using the previous equations, which are specializations of the general ones
presented in ref. 7, the one-loop effective potential is given by

1 JddEdw n{ g:(k, ) P(¢) P'(9)
2‘ (27[)d+1 0)2+[V]€2—P/(¢)]2
— (¢ = ¢o) + O(/?) (18)

1
L5 do] =5 PA9)+

Equivalently
1 1 dicd
VLol =3 P43 | e
n {w + [k = P'(9)]° + &a(k, ) P(9) P"(¢)
w? + [vk?— P'(¢)]?
— (9= 9o) + O(?) (19)

At this stage we should be explicit about some technical details: First,
the way we have chosen to treat the functional Jacobian is equivalent to
choosing the Stratonovich calculus for the stochastic noise.” The modifica-
tions attendant on the choice of the [to calculus are in some ways a sim-
plification of the current procedure, but in other ways lead to additional
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technical complications. Appendix E discusses some features of the Ito
calculus. Second, in deriving the formulae above it has been assumed (in
performing the functional integrations) that the field ¢ is unrestricted, and
can take on all values from —oo to + oo. Strictly speaking, this is of course
not the case if ¢ represents a concentration, but this is not a serious restric-
tion. One can deal with this either by (1) choosing the forcing term P(¢)
to strongly suppress negative values of ¢, and then taking a suitable limit,
or more prosaicly (2) by realising that in making the one-loop approxima-
tion we have already assumed that fluctuations are in some sense small, so
that if we look at quadratic fluctuations around some positive value of the
background field ¢, then the error made in letting d¢ = ¢ — ¢, range over
the entire real line is a higher order effect [at least O(.<7?)].

This is as far as we can go without making any further assumptions
about the additive noise. For instance, one standard choice is temporally
white, which means delta function correlated in time, so that gz(l?, w)— gz(lE )
is a function of kK only Let us define X2=[vk2— ((75)]2 + &,(k) P(¢) P"(¢)
and Y2=[vk>—P'(¢)]2 It is easy to see from its definition that Y2 is real
and positive, and so is Y. If X2 is positive, we can make use of the standard
integral identity [ X and Y are positive, see ref. 27, Eq. (4.222.1)], namely

+ oo w?+ X?
j do In <M>=2n()(— Y) (20)

— o0

to re-write Eq. (19) as

1 ddk 2 2 ~ (7 ”
P do) =5 P 45 [ S VDR =PI+ 20 P) PG5

— k2= P'($)|] = (§— o) + O(H?)

If X2 is real and negative, we can define X?>= —Z2 with Z a real positive
number. In this case we must make use of the following integral (see
Appendix D)

+o0 w>—7Z>+ie ]

— 0O

to get the appropriate result; here ¢ is a real, small, and positive number.
Averaging over the =+ justifies the following prescription

+ oo w?—27? +oo w —22

— 0 — 00
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This prescription is guaranteed to preserve the reality of the effective poten-
tial. In general we should write

] d’k

"’/[(b,fﬁo]—ip((f’)'i'i&fjw
x {Re[/[Vk2— P ()12 + &(K) P($) P"($)] — |vk>— P'(9)|}
— (¢ = ¢o) + O(7?) (23)

where we have used the w-integral to recast (19) into (23). Remembering
that limz_ 5 g,(k)=1 [recall (3)], it is clear that there are no infrared
divergences (k — 0), at least for this effective potential at one-loop order.
To investigate the ultraviolet (i.e., short-distance) behaviour, it is useful to

re-express this in the form

1 1 d%k | -
VU o1 =5 PO 5 o | g R = P9)

(24)

It is clear now that this effective potential will be finite provided the spatial
part of the noise spectrum satisfies

k) (25)

Thus, while the noise acts as the source of the fluctuations, it can also serve
as the regulator to keep physical quantities UV-finite, as should be clear
from (25). Indeed, whatever modifications one might make to the noise in
the ultraviolet region will have no consequence for the long-wavelength or
hydrodynamic limit. The noise is intended to model fluctuations above a
certain limiting resolution length/time scale, thereby making its short dis-
tance behavior immaterial, in so far as one is interested in studying the
long distance, long time asymptotic behavior of the stochastic model.®

6 Since this point may cause some confusion to the reader, we briefly pause to belabour it: UV
renormalizability is not the same as UV finiteness and we do not claim that the theory has
to make sense at arbitrarily short distances. (If nothing else, in real chemical kinetics the
interatomic spacing will provide a natural UV cutoff.) What UV renormalizability does is to
sharply /imit the number of relevant operators, so that the low energy theory (long distances,
large times) is guaranteed to be relatively simple. Lack of UV renormalizability is not fatal
for a theory, but does make life considerably more complicated. This phenomenon is known
in the quantum field theory literature as “decoupling;” see e.g., Weinberg 11.(2?
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For definiteness, let us now take the spatial noise spectrum to be
cutoff white, i.e.,

&2(k) = g5(lkl) = 6(A — k) (26)

With this choice of noise, we can Taylor expand the square root of Eq. (24)
in the ultraviolet regime to see that there is a divergent term proportional
to P(¢) P"(¢) A9~2, and a subdominant divergent term proportional to
P(¢) P'(¢) P"(¢) A9~*. Since the classical (tree-level) potential is just P*(¢),
to have any hope of absorbing the infinities into the bare action we must
have d<4. That is: the reaction-diffusion-decay system, subject to white
noise and for any polynomial P(¢), is one-loop ultraviolet renormalizable
only in 0,1,2, and 3 space dimensions. In 0 space dimensions the reaction-
diffusion-decay system reduces to a Langevin reaction-decay system which is
still interesting, (see below). In d =1 the reaction-diffusion-decay system is in
fact one-loop finite. (Strictly speaking the claim of one-loop renormalizabi-
lity also requires the investigation of the wavefunction renormalization; this
is beyond the scope of the present paper. For related discussion see ref. 28.)
The assertion that arbitrary polynomial reaction kinetics can be renorma-
lizable in low dimensions should not (with hindsight) be alarming. After
all, exactly the same thing happens for quantum field theories in d=2
spacetime dimensions, where P(¢), is renormalizable for arbitrary polyno-
mials. If we restrict the form of the polynomial occurring in the reaction-
diffusion-decay system, we can have one-loop renormalizable theories in a
higher dimensions. We will come back to this particular point later.

To be more explicit, we expand the unrenormalized one-loop effective
potential as follows

e Loy 1 e dk & ((1/2\ [P(9) P'(9)]"
"/[d)’ ¢0]—§P (¢)+2(%~[(2ﬂ)d n§1 {( n >[V]Z2—Pl(¢)]2nl}

—(¢— o)+ O(7?) (27)

This expansion only makes sense if |P(¢) P"(¢)| < [vk?— P'(¢)]? for every
value of |k|. This requires both P'(¢) <0 and |P(¢) P"(¢)| <[P (¢)]* The
relevant integrals, after a rescaling, are’

of [© 1
Sepp(n, d) fo A x4 11+ x2)!1 72 = B(d]2, 20— 1= d)2)

_ I(d2) I'(2n—1—d/2)
B 2I'(2n—1)

(28)

7 See ref. 27, Section (8.380.3).
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These integrals converge for n>(d+2)/4. For n<(d+2)/4 we should
introduce appropriate counterterms. Of course, the one-loop effective
potential may make perfectly good sense even when this Taylor series
expansion is problematic. By this we simply mean that the one-loop con-
tribution can be finite for values of the parameters and momentum that lie
formally outside the radius of convergence of the above series: one would
then obviously not proceed by expanding and integrating term-wise, as we
have done here.

Finally we should remind the reader that even if the generic reaction-
diffusion-decay system is non-renormalizable for d >4, this does not mean
that such theories are completely useless. (Though it must be admitted that
the number of physically relevant examples in four or more space dimen-
sions is rather limited, [see for example variants on the idea of Kaluza-
Klein theory], the non-renormalizability per se is not the issue.) All that
non-renormalizability implies is that the theory must be viewed as an
“effective field theory” that must include many more terms in the effective
action than naively arise in the zero-loop approximation. These new terms
carry with them additional (typically dimensionful) coupling constants, and
these coupling constants govern the range of validity of the effective field
theory. See ref. 22 for a modern discussion of effective field theories in the
QFT context. In statistical mechanics language, the universality class of an
effective field theory is much more complicated than would be naively
deduced from the zero-loop approximation.

We next plunge into a discussion of the above as a function of the
spatial dimension, d.

2.1. Reaction-(Diffusion)-Decay: d=0

In d=0 space dimensions, there is of course no diffusion, and the
system reduces to a simple Langevin reaction-decay system. We have

d

S O=P@+1 (29)

Specific examples of this behaviour include the noisy logistic equation
(with additive noise)

i¢=r¢<1_i>+n (30)
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and the noisy Lotka—Voltera equation (used as a model for predator-prey
interactions)

d
5 V=Na+bP) +1y (31)
d
g P=PeN=d) (32)

More generally, one can easily construct noisy versions of standard toy
models as the Michaelis—Menten model for enzymatic autocatalytic reac-
tions, the Goodwin switch (a model of feedback control), the Brusselator,
the Fitzhugh—Naguno model of nerve potentials, or the Field-Noyes model
for oscillating reactions.”

In d =0 there are tremendous simplifications in the general formalism.
For time translation-invariant Gaussian noise it follows that

d
P doi d=01 =3 P9 45 [ 52

) P(4) P"(9)
2+ [P(9)]?

<in [ 14845 |-w=paroir e
Equivalently,

1 1 d
VL dos d=01=5 P(§) +5 o | ==

< lIn {wz +[P'(§)1%+ &:(w) P($) P"(¢)
w®+[P($)]?

—(¢— ¢o) + O(7?)

Just as in the case of field theory (d> 1) this is as far as we can go without
making any further assumptions about the noise. For instance, temporally
white noise implies g,(w) — 1. Integrating over frequencies and using the
integral (20) supplemented by (21) and (22), yields

Vs $o; d=01=1P(¢) + Lo/ {Re /TP ($)1*+ P(§) P"(¢) — /[ P'($

— (¢ = o) + O(?)
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which can be re-written as

P [§; §o; d=0]=3PX) + 3/ {Re (/5[ PX(¢)]" — [P'(¢)]}
—(¢— o) + O(2?) (34)

Note that from a field theory point of view a SDE in 0+ 1 dimensions is
almost quantum mechanics, and one-loop physics is almost semi-classical
JWKB physics. To see what we mean by this, consider the quantum
mechanics of a system governed by the Lagrangian

1 /dx\?

The techniques more usually applied to quantum field theory can also be
applied to quantum mechanics to obtain a quantum mechanical effective
potential

V//(x)
m

Tl x0] = V) +5hRe | [ = ()£ 0UR) (36)

This effective potential has the standard interpretation of being the mini-
mum expectation value of the Hamiltonian operator, when extremized over
stationary states satisfying {£)> = X. In this case there is a second possible
interpretation in terms of the zero-point energy associated with the natural
oscillation frequency Q=./V"/m, and it is in this sense that one-loop
quantum mechanics is equivalent to semi-classical quantum mechanics. The
reaction-(diffusion)-decay system is formally very similar to one-loop quan-
tum mechanics with the replacement V(x)— $P(¢)% the only difference
arising from the manner in which the Jacobian is treated (the |P'(¢)| term).
In quantum mechanics two classically degenerate minima often have their
degeneracy broken via semi-classical effects: from the discussion above,
analogous phenomenon is seen to occur in stochastic mechanics.

(Note, however, that this is an analogy, not an identity. The SDE
always gives rise to Weiner functional integrals, analogous to Euclidean
quantum mechanics, instead of the Feynman functional integrals of quan-
tum mechanics, and the SDE never exhibits the interference phenomena
and complex amplitudes that are so characteristic of quantum mechanics.)

2.2. Reaction-Diffusion-Decay: d=1

Spatial structures and patterns in one dimension, such as for example
the prenatal tail markings in Genetta genetta (common genet) can be
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successfully modeled by one-dimensional reaction-diffusion equations. The
reader is referred to the book by Murray for more concrete examples.("

For d=1 the relevant integral, though finite, is not analytically trac-
table. We are interested in evaluating

1 1 =
Vg dosd=11=5 PX9) +5 |~ dk{Re /Tik> =P (§) T+ P(9) P'(9)

—[vk* = P'(¢)1?}
—(¢— ¢o) + O(7?) (37)

By expanding in a power series, rescaling, integrating, and summing we
obtain the following result

1 [P
ﬂ =4 V2

© (1)2\ I(1/2) T(2n—3)2)
X2 <n > 2ren—1)

1
Y [Po: hosd=1] :§P2(¢)+

n=1

(BOE®

[P($)] >n—(¢—>¢o)+0(%2) (38)

This particular expansion only makes sense for P'(¢)<0, which is the
region of field configuration space in which small perturbations diec away
in the absence of noise.® Furthermore, the radius of convergence of the
resulting sum is equal to one, so that this expression is limited to the region
PP” < (P')? These limitations are not fundamental, but are artifacts of the
expansion and integration procedure (the individual limits of first expand-
ing and then integrating term by term do not commute) which must be
taken into consideration.

It is easy to see that the integral of Eq. (37) is real, convergent, and
well behaved for P'(¢)>0 and P(¢) P"(¢)>[P'(¢)]> Indeed, there is an
exact (if rather formal) representation of this integral in terms of incom-
plete elliptic integrals of the first and second kinds. The integral can also
be evaluated in terms of a 3 F, generalized hypergeometric function and/or
an assortment of complete Elliptic integrals.® Though exact, these formula-
tions are too cumbersome to be useful and we can better understand the

8 Inserting ¢(1) = ¢ + d¢(¢) into the noiseless version of (6), and expanding to first order in
the time-dependent perturbation d¢(t) yields: d[d¢(¢)]1/dt = P'(¢,) d¢(t) + O[ (6¢)?]. So for
P'(¢o) <0 perturbations are damped in the absence of noise.

° For further details see ref. 27, section (9.14), p. 1045, and/or section (8.1).
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general situation by rescaling the original integral, using k=./|P'($)|/v x,
to give

1 L P)R
V'[¢;¢o;d=1]=§P2(¢)+7&/%j e

2r
X {Re \/(xz +1)? +P[(?;?(I;’)’Sq25) —|x*+ 1|}
— (¢ ¢o) + O(/?) (39)
where + = —sign[ P'(¢)]. Thus without any detailed calculations we know

that the form of the effective potential is

L PG [P P
2w F{[Pw)]z}

— (¢ = ¢o) + O(2?) (40)

1
”V[¢;¢o;d=l]=§P2(¢)+

with F,[z] the function

Fi[z]=f dx{Re /(1) 42— ¥+ 1]} (41)

such that F,[z=0]=0. It is F_[z] that corresponds to the case P'(¢) <0
discussed above [see Eq.(38)]. The case F_[z] is trickier as there is no
simple Taylor series expansion around z =0 (at least not in integer powers
of z). The overall shape of these functions can be seen in Figs. 1 and 2.

F+(z) and F-(z)

sof ' ' 71 @)
F+(z)
30
20
10
ok, , . .
0 20 40 60 80 100 £

Fig. 1. Plot of F,(z) for positive values of z, from zero to 100.
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F+{z) and F-(z)

Fig. 2. Plot of F,(z) for negative values of z, from —1.00 to zero.

Near a stable fixed point one has P'(¢) <0, as mentioned above. We
can use either Eq. (38) or expand Eq. (41) for F, (z) to deduce that

a1t 1 o I'(1/2)* P(¢) P"($)
Y savtel @3 ¢07d—1]—2P(¢)+ 24 [—P($)]"

21 v
P2(PH)2
(P/)S/Z

p=d+0 (ST o) @)

This is the universal behaviour near a stable fixed point of the PDE.

On the other hand, at a point of neutral stability for the original noise-
free PDE we have P'(¢)— 0, corresponding to z — oo. Fortunately, the
large z behaviour can be analyzed analytically. Some tedious integral
analysis leads to the expressions

1 I°(1/4)>
Fo(2)=A,, 21+ 0(1)2)] = —=- (1 + 0(1)z))
x 6 ﬁ
— 1.23605... z*(1 + O(1/z)) as z— 4o (43)
1 I(1/4)?

F.(—z)=—A4__2*[1+0(1)z)] = _6J%ZS/4(1 + 0(1/z2))

— —087401... 2¥%(1+ 0(1)z)) as z— + (44)
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Thus near a point of neutral stability we find universal behaviour described
by

1 1 " 3/4

“yﬁeutral[(]ﬂ; ¢0’ d: l] :5P2(¢) +Z <52{14ioo %

— (¢ do)+ O(AP(9)> Y P(¢) P"(9)) + O(?)
(45)

Finally, near an unstable fixed point P'(¢)> 0. Then we must use Eq. (41)
for F_(z). For z>0 a (not particularly obvious) series of manipulations
leads to

dF_(z):er dx :1Re{ | K</ﬁ>}
dz 20 =14z 2L 1 e Wiz

Here K(k) denotes a complete elliptic integral of the first kind. Unfor-
tunately, although well-adapted to numerical work, this expression is not
particularly illuminating from an analytic perspective and we do not pursue
it any further.

To summarize: we see that in d =1 space dimensions a lot can be said
about the structure of the effective potential, without ever having to specify
the precise nature of the driving term. We trust that the general outline of
the calculation is clear, and that applying the method to specific examples
will now be straightforward.

2.3. Reaction-Diffusion-Decay: d=2

In two spatial dimensions, reaction-diffusion equations have been
extensively employed as models for the formation of patterns on animal
coats (such as leopard spots), wing-marking patterns on butterflies, or
fingerprint development in humans, etc."

For d =2 the integral needed for the calculation of the effective poten-
tial is analytically tractable. After a change of variable, x = vk?, and the
introduction of an ultraviolet cutoff, 4, the desired integral becomes

vA?
j dx JS(x—P )+ PP"
0

=1p /(P2 + PP —1PP"In[/(P)*+ PP"—P']
+i(vA2 = P') /S (vA>—P')* + PP"
+1PP" In[\/(vA*>— P')>+ PP" +vA>— P'] (46)




Effective Potential for the Reaction-Diffusion-Decay System 921

This integral is tabulated in ref. 27, Egs. (2.261) and (2.262.1). For the time
being we assume that all arguments of both the square roots and the
logarithms are positive, and leave the more technical details for later. The
integral that appears in the one-loop effective potential, Eq. (23), yields

jmz dx[/(x— P2+ PP" — /(x— P')?]

1 1 1
:EP, (P/)2+PP//7§(P/)27§PPN ln[ (PI)Z_'_PPNiPI]

1 PP"
+2(vA2—P’)2{ 1+ 1}

(VAZ_P/)Z_

2_ pry\2 " 2_ pr
+;PP"1n(2vA2)+;PP”1n{\/(VA Py + PP +vd P]

2vA2
(47)
Taking the A4 — oo limit, we get
vA2
j dx[/(x— P2+ PP" — /(x— P')*]
0
=1P'[/(P')*+ PP —P']
—1ppP"In[/(P')?+ PP"—P']
+1PP" In(2vA?) + LPP" + O[ 1/(v4?)] (48)

This explicitly verifies the presence of the logarithmic term expected from
naive power counting.® This logarithm is the only divergent contribution,
and since it is proportional to P(¢) P"(¢), the (one-loop) regularization
may be performed by introducing the renormalization scale 4 and making
the following split into renormalized parameters and counterterms

Pbare( ¢ ) = Prenormalized( ¢ ) + %Kpgenonnalized( ¢ ) ln( A 2/)“ 2) (49 )

where K is a calculable numerical constant whose precise value is not
important for the present discussion. It is useful to make an additional
finite renormalization in order to eliminate the ;PP” term from Eq. (48).
(It is important to realise that these finite renormalizations do not affect
the ground state structure. They are simply equivalent to a convenient
choice of renormalization scale yu.)
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After carrying out these steps, the one-loop effective potential becomes
1 2 d ’ "2 " ’
Vb posd=21=5 P§)+5— | P'(/(P)+ PP P
2 167y

_PP//1n< (P,) +12)P”_P’>:|—(¢—>¢O)+O(%2)

" (50)

Like the action, the one-loop effective potential cannot explicitly depend on
the renormalization scale x. In fact, the renormalization group equation
tells us that

d d of
pa, V9o d=2]=0 3,uL;(qs)=—*1”"(¢>)+0(&f2) (51)
1t 1 8my

which when combined with wavefunction renormalization and the general
theorem of algebra will give the renormalization group equations for the
couplings in ¥[¢; do; d=2]1.%" We note that this equation is similar in
form to the one found for the P(¢), QFT in two spacetime dimensions, see
ref. 29.

It is clear at this stage that the inclusion of a bare tadpole term
(Po)pare 18 essential. If there was not a tadpole, then P(¢) would start off
as Py¢ + P,¢* + P3¢> + ---, so that the lowest order term in the zero-loop
potential would be Pi¢> On the other hand, as is explicitly seen in
Eq. (48), the divergent terms are proportional to PP" =(P,¢+ P,¢*+
Py¢3+ - )2Py+6P3p+ ---)—>2P  Pyp+ ---, and there is a divergent
term proportional to ¢ which is not present in the tree-level effective poten-
tial. Thus, in order to render the theory one-loop renormalizable a tadpole
term must be included in the tree-level potential.

Notice that if P(¢) is odd [ P(—¢)= — P(¢)], then reaction-diffusion-
decay is symmetric under the following Z, symmetry transformation

- —¢ and - —7g (52)

This prevents the generation of any of the even power monomial contribu-
tions to the polynomial P(¢), including the tadpole, and one never needs
to introduce the tadpole at the tree-level. Notice however that this sym-
metry is not relevant to a realistic reaction-diffusion-decay system, since it
excludes any two-body reactions (in fact all 2n-body reactions).

Finally, we mention what happens when one has to deal with one
of the branch cuts that we have temporarily suppressed for simplicity of
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presentation. Although the intermediate stages of the calculation are
algebraically involved (and messy), the ultimate answer is simple: take the
real part of the expressions above.

2.4. Reaction-Diffusion-Decay: d=3

An example in which prediction and observation of pattern formation
in three dimensions has created much interest is in the field of nonlinear
optical systems. Recently, three-dimensional reaction-diffusion equations
(of the Swift-Hohenberg type) have been derived for degenerate optical
parametric oscillators in which three-dimensional Turing structures and
spatial solitons have been predicted to exist as stable structures.®® In addi-
tion, morphogenesis and structural development in embryos are examples
of intrinsically three-dimensional phenomena.

The case d=3 is a straightforward generalization of the d=1 result.
We are interested in evaluating

VLh; ¢o: d=3] :%P2(¢)+ of Loo dk 4nk?

(2n)
x {Re /[vk>— P'($)1*>+ P($) P"(¢)
— V2 =P ()12} — (¢ = do) + O(4?) (53)

The integral is no longer finite and a single renormalization (without running
logarithms) must be performed to absorb the infinity in the renormalized
parameters. One must be careful to keep track of all the numerical coefficients
and the final result is

1 1 .y 5/2

" i <1/2> I'(32) I'2n—5/2)
Zi\n 2I'(2n—1)
P(¢) P”(¢)>"
[ Tpmr | — (6= g0+ 0 (54)
< [P(4)]? ’
This expansion again only makes sense for P'(¢) <0 (the region of field
space in which small perturbations die away in the absence of noise).
Furthermore, the radius of convergence of the resulting sum is one, so that
this expression is limited to the region PP” < (P')% These limitations are
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again not fundamental, but are merely a reflection of our choice of Taylor
expansion in terms of the field variables. In a manner similar to what was
done in d=1 we can also write the above Eq. (54) as

L PG [ P($) P'()
of
Qo o s {[P'«mz}

—(§— do) + O() (55)

1
115 doid=31=3 P(¢) +

with F4=>[z] now being the function

o 1
Fﬂ:3[z]=J dxxz{Re (x2i1)2+z—|x2i1|—22} (56)
+ o 2x

again such that F,[z=0]=0. It is F_[z] that corresponds to the case
P'(¢) <0 discussed above [see Eq. (54)]. The case F_[z] is again trickier
as there is no simple Taylor series expansion around z=0. Note that the
last term z/x? is the counterterm introduced to guarantee UV finiteness,
and that the integral is also IR finite. These functions can be analyzed in
a manner analogous to the discussion for d =1 but for the sake of brevity
we do not repeat details which are left to the industrious reader.

2.5. Special Cases: Monomial Interactions

There are nice simplifications for monomial interactions, where
P(¢)=C_,¢". (Because of the generic presence of the tadpole term this
monomial behaviour should always be imposed on the renormalized inter-
actions, not the bare ones.) For monomial interactions the combination
P(¢) P"($)/[ P'(¢)]* reduces to the constant (n— 1)/n, and the one-loop
effective potential (for d=1, and suppressing ¢, for convenience) becomes

1 2 42n 1 |_é¢n_l|3/2 2

with K, [1;n] a calculable (n-dependent) dimensionless constant. If the
differential Eq. (6) (without noise) is assumed to be stable against small
perturbations, the coupling ¢ must be negative, and the exponent » must
be an odd integer n =2m + 1. In this case P'(¢)=(2m+1) Ep*" <0 <=E<0
guarantees that linear time-dependent perturbations will decay in time. The
effective potential becomes

K. [1;2m+1]+ O(</?)
(58)

1 s am L [EP2 g
V[¢;d=1] =§fz¢4 +2+%&/T
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From the previous equation, one can see that noise induced corrections to
the effective potential dominate for small fields in one space dimension.

For two space dimensions the restriction to monomial interactions
implies

1 k4
VL d=2] =5 E9¥ 4 o B

X{n(m_n)_n(n_mn F‘ﬁ”‘(vz’“j—”—”)”

Vit
+0(2?) (59)

By making a finite renormalization u — g, we can simplify the previous
equation to obtain

g . . _ _lVZ 2n '52{
VLgs dos d=2] =5 > 1~

L)+ o)
g (60)

E2 n(n—1) In <

The coefficient of the logarithm is negative, implying a breakdown of per-
turbation theory for large fields. More importantly, since the coefficients of
P(¢) run at one-loop, and a monomial is not a fixed point of the renor-
malization group equations, if we tune the interaction to be monomial at
some fixed scale & then (in d =2) the interaction will not remain monomial
if the scale is changed.

For three space dimensions the situation is similar to d=1. For a
monomial interaction the one-loop effective potential is given by

1 _ ggn—1(572
(2n)2&/| é‘fm' K. [3:n]+0(2?)

For a system stable in the absence of noise (¢ <0 and n=2m + 1), we have

1 5/2 | 4 15m
o
(27) v

1
Vb dord=31=3 97 +

K. [3;2m+1]+ O(+2?)

1
V190 d=3]=5 "2+

In this case the noise induced effects (one-loop effects) become important
for strong fields.

2.6. Special Cases: Higher Dimensions

We have seen that arbitrary polynomials in the reaction-diffusion-
decay system subject to white noise are one-loop ultraviolet renormalizable
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in 0, 1, 2, and 3 space dimensions (in fact, finite for 0 and 1 space dimen-
sions). We can extend the range of dimensionalities in which these systems
are one-loop renormalizable at the cost of restricting the form of the inter-
action.

For instance, in four space dimensions we have already seen that there
is a divergence proportional to P(¢) P'(¢) P"(¢). For general P(¢) this
cannot be renormalized, but if P(¢) is a polynomial of degree three or
less, then P'(¢p) P"(¢) is also a polynomial of degree three or less. For this
restricted class of interactions, the divergence can be absorbed into bare
potential even in four space dimensions.

In six space dimensions there are two new divergent terms. They are
proportional to P(¢)[P'(¢)]> P"(¢) and [P(¢) P"(¢)]> respectively. If
P(¢) is a polynomial of degree two or less then [P'(¢)]? P"(¢) is also a
polynomial of degree two or less and the renormalization program can be
carried out. In this case P"(¢) is either a constant or zero, so that the
second type of divergence is no further obstruction.

Finally, in eight space dimensions there is only one new divergent
term. It is proportional to P(¢)[P'(¢)]* P"(¢) and so the theory is one-
loop renormalizable only for linear interactions (i.e., for free fields where
the theory is not only renormalizable but is actually finite.)

2.7. More General Noise

It is clear from the above arguments that the ultraviolet renor-
malizability of the reaction-diffusion-decay system depends critically on the
large momentum behaviour of the noise two-point function. In some
problems, colored noises maybe of interest, and we just give a necessarily
brief discussion of the modifications needed in our analysis. Let us suppose
that the noise is more general than (space-time) white noise. For instance,
let us assume the noise is still temporally white, but spatially power-law
distributed in the ultraviolet region with

&2(k) = &,(Ik|) = (k/ko) ~% O(A —k) (61)

where the positive exponent 6 characterizes the strength of the ultraviolet-
singular noise. In order to obtain the divergence structure of the one-loop
effective potential, we must make use of Eq. (23). It is then easy to see that
the first two terms in the expansion for the effective potential have ultraviolet
behaviour proportional to P(¢) P"(¢) A°~2=7 and P(¢) P'(¢) P"($) A9=*~9,
respectively. Since the bare potential is P*(¢), to have any hope of absorbing
the infinities into the bare action we must have d <4 + 6. The one-loop
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effective potential for the reaction-diffusion-decay system is then one-loop
ultraviolet renormalizable for d <4 + 0 spatial dimensions.

If the noise is not temporally white, (but still Gaussian), one must
revert to Eq. (18) and perform a case-by-case study.

3. NOISE AND STABILITY: AN APPLICATION

In this section we illustrate in broad strokes how the one-loop effective
potential can be used to investigate the onset of instabilities and pattern
formation in physical, biological, and chemical systems"* modelled by
reaction-diffusion equations (6).

By way of a concrete example which will serve as a simple template for
the one-loop equation, we consider the following model:

W= () +n(E. 1) ()
where P(¢)=a¢*+ b + c is the kinetic reaction polynomial parameterized
by three real constants a, b, ¢, and the diffusion constant v is a positive real
number. We take the noise to be Gaussian and white. We first briefly run
through the standard steps needed to perform a linear stability analysis of
the noiseless or zero-loop version!® of (62). This will serve as a point of
reference when we come to discuss the linear stability analysis to be per-
formed on the effective one-loop version of (62).

3.1. Zero-Noise Analysis

As is well known, the study of the onset of symmetry breaking
instabilities, be they Hopf bifurcations or Turing instabilities, starts by
classifying all the static and spatially homogeneous solutions ¢, of the-
reaction-diffusion equation at hand. These constant field configurations
represent the maximally symmetric states of the system, which could be stable
or unstable with respect to time and/or space dependent disturbances. For
our toy model, these states satisfy

P(¢o) =0 (63)

19 The noiseless limit of general reaction-diffusion equations need not necessarily coincide with
the zero-loop limit, though these limits are in fact identical for our model equation; see the
further comments to this effect below. For general details regarding the distinction between
no-noise and zero-loops, see ref. 7.
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which is the result of evaluating (62) for constant fields in the absence of
noise (which is completely equivalent to the zero-loop limit of this equation).
The solution is immediate, namely we have that

¢i_—bi./b2—4ac (64)

o 2a

It should be pointed out that if the field ¢ represents a chemical concentra-
tion, then ¢ and ¢, must be non-negative. There are many choices of the
control parameters a, b, ¢ for which this condition is met. With knowledge
of the constant states, the next step is to expand about them so that we can
study both the temporal and spatial evolution of disturbances with respect
to these symmetric states. Setting p* =¢ — @, leads to

+

op*
(gt — Wt =+¢* /b%>—4dac+a(p*)? (65)

which is the exact zero-noise equation for the perturbations. In arriving at
this expression, we have used (63) and P'(¢g&) = +./b* —4dac, P" (¢ ) =2a.
To study the onset of linear instabilities, we need only focus on the linear
part of this equation. This is most conveniently carried out in momentum
or mode space, for which we introduce the Fourier transform (in any number
d of spatial dimensions) of the fluctuation ¢(x, )

4G e
Gy 7 Fal0) (66)

P(X, 1) =f

In terms of the mode functions ¢,(z), the (exact) zero-noise equation for
the perturbations takes the form

d% .
—[—vq +/b*—4ac] (pq—i-aj = PrPg—

= J(¢®) ¢ ;+ nonlinearities (67)

which identifies the momentum-dependent eigenvalue A(¢?) and the non-
linear mode-mode coupling terms.

3.1.1. Onset of Hopf Bifurcations. By definition, Hopf bifurca-
tions are spatially homogeneous but time dependent linear instabilities."
Spatial homogeneity corresponds to the zero-momentum mode (§=0), so
the onset of this class of instability is revealed by studying the properties
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of the zero-momentum eigenvalue: A(¢g>=0). A Hopf instability occurs
when the real part Re 4(0) =0. It is useful to consider the mode eigenvalues
as functions of the control parameters (a, b, ¢) in the reaction kinetics poly-
nomial. If we define by, by bf{opf=4ac, then it is easy to see that for
b < by, the eigenvalue A(0) is pure imaginary and the linearized pertur-
bations oscillate about the constant and static field configurations ¢y
and ¢, with the same frequency w = |b*—4ac|? On the other hand, if
b > byyop, then the linearized perturbations about ¢, decay exponentially,
and they grow exponentially about ¢, . The instability therefore sets in at
b= bypr» and only the ¢4 field configuration is unstable.

3.1.2. Onset of Turing Instabilities. The onset of spatial struc-
ture formation (Turing instabilities) occurs whenever the eigenvalue
satisfies the condition Re[ A(¢?)] >0, for some non-zero mode or modes."
The corresponding mode (or modes) set the length scale L (or scales) that
characterize the spatial structures: L ~ 1/q. Note that for b < by, the real
part of the eigenvalue for all modes is negative, so no spatial structure can
form, and this holds for both the initial configurations ¢ . Furthermore
for o, b>Dbpeps, and for any ¢, the eigenvalue (g% is a negative real
number. Therefore, no spatial patterns can develop as linear perturbations
of this field configuration.

On the other hand, consider the case ¢y and b > by, The eigen-
values for all modes are real, and of these, there is a finite band of momen-
tum scales for which the eigenvalue is strictly positive: namely, for 0 < ¢* <
q3=./b*—4ac/v. So, one expects onset of spatial structures to form with
length scales corresponding to this momentum band.

This completes the purely linear stability analysis of the toy reaction-
diffusion equation (62) in the absence of noise.

3.2. One-Loop Analysis

We now demonstrate, (by making use of the effective potential
calculated in previous sections), how the inclusion of noise at one-loop
impacts on the linear stability analysis illustrated above for our simple
reaction-diffusion model. The idea is to repeat the above steps, but working
now with the effective one-loop reaction-diffusion equation. To obtain the
equations of motion in the presence of noise, we refer to the discussion in
Appendix B of ref. 7. The complete effective action for reaction-diffusion
systems in the presence of (arbitrary) Gaussian noise is given by

IT¢; 901 =14 [[d% dr a7 dr'(Depd — Pl 81) 85 (Ded — Pual $1)  (68)
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where D and P are an effective differential operator, and effective kinetic
reaction function, (not necessarily a polynomial!), respectively. The full (to
all loops) equation of motion follows from the condition:”

OrLgidel _, . T Ldidel )

o¢ od
where the second expression holds for the effective potential and yields the
dynamical equation satisfied by static and homogeneous field configura-
tions. As a quick check of the formalism, consider the zero-loop effective
potential: ¥ [¢; ¢o] =2P?[$]. From (69) we must have P(¢) P'(¢)=0, so
that either P(¢) =0 and/or P'(¢)=0. In fact, we know from (63) that it
must be P(¢) that vanishes to correctly yield the solutions of (62) in the
noise-free static and homogeneous field limit. The “spurious” factor P'(¢)
is a consequence of the quadratic nature of the effective action (68). It is
easy to verify that P'(¢)# 0 evaluated at the zeroes of P(¢). This is impor-
tant in that we do not generate more solutions than those corresponding
to the zero-noise equation (62): zero-loops should correspond to zero-
noise, and we find that this does in fact hold for our model. In general,
spurious solutions will be absent whenever a certain differential operator
(D—P'[#]) is non-singular (invertible). Even in those situations where it
can become singular, a simple limiting procedure can be invoked to
eliminate the spurious solutions.(”

Under these conditions, ie., making use of the invertibility of
(D—P'[¢]), the one-loop equation of motion associated with (62) is

- -
g—N%+mﬂW¢ﬂ%%Jﬂwﬁﬁ%D”

=[PXp) +2/X(¢) + O(*)]12  (70)

where the one-loop terms in the effective potential denoted above by X{(¢)
have been computed for general kinetic reaction functions and may be
written down by inspection from (34), (40), (50), and (54) above. It should
be noted that the one-loop contribution to the effective potential vanishes
whenever P(¢) =0 so that without loss of generality we can write the O(.<7)
terms as

X(9)=P($) h(9) (71)

with /(¢) remaining finite (and generally non-zero) as one approaches
solutions of the zero-noise equations of motion. Furthermore, at one-loop
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we know from (rather general considerations detailed in ref. 28) that the
one-loop effective action for any reaction-diffusion equation driven by
white noise has no wavefunction renormalization in fewer than six spatial
dimensions. This means that in dimension six or less, the differential
operator D per se remains unchanged at one-loop. There can, however, be
finite renormalizations that induce finite and calculable one-loop correc-
tions that involve combinations of fields and derivatives; we summarize the
first few possible structures belonging to this class above. It is clear from
(70) that as the noise amplitude .o/ is taken to zero, we recover the zero-
loop (noiseless) equation (62) of motion.
In view of the above, the one-loop equations of motion read

i o S _ 2h(¢) 12
o WV O AV, A0 = P§) | 1+ o " 0(4?)
=P(§) + Lh(¢p) + O(4?) (72)

We are now ready to proceed with the stability analysis for the one-loop
reaction-diffusion equation (70). Just as for the noiseless, zero-loop case,
one begins by solving for all the possible static and spatially homogeneous
configurations. These will be the solutions of

P(¢o) + A h($o) + O(?) =0 (73)

no matter how complicated the derivative structure on the left-hand side of
the one-loop equations of motion may be. We denote by ¢, the one-loop
constant field configurations to distinguish them from their tree-level coun-
terparts. In fact, it is easy to demonstrate that the zero-loop solutions ¢,
are in general not solutions of this one-loop equation (73). Thus, we can
conclude that typically ¢, ¢,. Physically, this reflects the fact that the
presence of noise has altered the symmetric states of the system. Suppose
we have chosen a particular spatial dimension and have catalogued these
new symmetric states. [ To do so in actual practice requires selecting one

f (34), (40), (50), and (54), and solving the resulting (algebraic-trans-
cendental) equation implied by (73). However, bear in mind that the point
we wish to make can be achieved without doing so explicitly.] The next
step involves expanding the one-loop equation in (linear) perturbations
about these one-loop states. We define ¢ = ¢ — o, and write

06 . ] )
a—(’l’ V2P + O(AV?G, A02P,..) = P(¢ + $o) + Sh(P + §o) + O(2)
(74)
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We Taylor expand the right-hand side of (74) making use of (73). We then
obtain the linearized one-loop equation of motion

— WP + O(AV?¢, A2 ,...)
=[P (¢o) + L' ($o)] ¢ + O(£?) + nonlinearities (75)

o9
ot

After Fourier transformation the evolution of the mode functions is
governed by

08, ~ . = .
% = J(g?) $4+ O(£?) + nonlinearities-O( /82§ ... (76)

where the one-loop mode-dependent eigenvalues are

A

Hq?) = —vg® + P'(¢o) + AN (§o) — O(AG2,...) (77)

The function % is the one-loop contribution to the effective potential
(divided by P) and has been explicitly calculated (for arbitrary P) in
various spatial dimensions. Since it is a function of the reaction polyno-
mial, it is also a function of the control parameters (a, b, ¢) appearing in P.
If there are finite renormalizations leading to new derivative structures,
then / will also depend on their respective numerical coefficients. For the
toy model considered here, this means that the one-loop mode eigenvalues
/ are also functions of the same parameters (a, b, ¢) that appeared in the
zero-loop eigenvalues in (67), as well as of whatever finite renormalizations
are present at one-loop.

We summarize our main point: when we investigate the conditions for
the onset of Hopf and Turing instabilities at one-loop, Re[4(0)] =0 and
Re[A(¢*)]>0, ¢>*#0, we will obtain new conditions on the parameters
that govern the onset of whatever instabilities are present, with respect to
the O(.7) noise-altered symmetric states ¢,. We see that the effect of the
noise is to shift the symmetric states of the system, as well as to change the
nature of the linear instabilities that may be induced by perturbations
around these new states.

4. DISCUSSION

In this paper we have made use of the field theory formalism
developed in ref. 7 and have applied it to the class of stochastic partial
differential equations subject to diffusion, decay, and polynomial reaction
kinetics. These equations are, for example, extensively considered in the
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mathematical modeling of chemical reactions, and biological pattern for-
mation.!">

We have adopted a purely phenomenological strategy and assumed
the form of the stochastic PDE to be given by Eq. (11), driven by real
additive noise with correlation function (2). We have then applied quantum
field theory methods to this equation in order to obtain the corresponding
(one-loop) effective potential. Although recognizing the possibility to map
microphysics to an effective stochastic PDE!315) when the underlying
microscopic master equation is known, this does not diminish the usefulness
of starting from phenomenological equations to model complex systems,
where either knowledge of the complete microphysics is lacking or where
one can not account for all sources of noise, both internal and external,
and fluctuations. As a case in point, we mention the problem of predicting
the pattern formation of animal-coat markings starting from the molecular
biology of genes: even if this formidable task could be carried out, there are
a host of truly unpredictable time and space dependent contingencies that
influence the animal’s development in the course of pattern formation, and
these certainly cannot be derived from first principles nor deterministically
anticipated. But we can certainly model them with (real) noise, which
could be additive and/or multiplicative. Once we have the candidate
stochastic PDE in hand, we can go on to calculate its effective potential,
a poweful tool permiting us to develop additional physical insight.

The subtleties of the physical interpretation and the usefulness of the
effective potential for non-equilibrium dynamics have already been addressed
elsewhere;” here we apply the effective potential formalism to a specific
class of real reaction- diffusion equations.

We have restricted that framework to the case of white noise and have
calculated the one-loop corrections (i.e., we have taken into account the
second-order fluctuations about the static and homogeneous solutions of
these equations) to the effective potential in various spatial dimensions and
for a general polynomial reaction kinetics term P(¢). The effective potential,
which provides information about the possible ground states of the system
(which may or may not be stable to small perturbations, see below), is
calculated by functional integral methods and we find that it is one-loop finite
for zero and one space dimensions, and one-loop renormalizable in two and
three space dimensions. By finite we mean there are no short-distance
divergences, and by renormalizable, we mean that whatever ultraviolet
divergences are present, they can be absorbed into the parameters appearing
in the original stochastic partial differential equation. In particular, in two
space dimensions, this renormalizability leads to a set of one-loop renor-
malization group equations (51) that govern the renormalization-scale
dependence of the parameters present in the original reaction polynomial.
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In understanding the onset of spatio-temporal pattern formation in
systems out of equilibrium, it has proven extremely useful to begin the
analysis by first solving for and then classifying all the static and spatially
homogeneous states allowed by the time-dependent partial differential
equations employed to model the system in question.®*" In this way, one
can straightforwardly decide whether the system will exhibit Hopf bifurca-
tions and/or Turing instabilities and get a handle on the qualitative nature
of the pattern expected to emerge.

This can be followed up by an amplitude analysis of the fluctuations
about these static and homogeneous states. The unstable modes are the
ones that lead to non-trivial patterns. For out-of-equilibrium systems
coupled to noisy environments (or with inherent internal noise) it is impor-
tant to know how the stochastic sources can alter and shift these static and
homogeneous states, since these affect the onset of the pattern-forming
(linear) instabilities. It is seen that indeed noise will affect these patterns in
a way which is computable. In fact, the calculations in this paper show how
the effects of stochastic noise on these states of reaction-diffusion systems
can be taken into account in an elegant and computationally direct way
following the general formalism developed in ref. 7.

APPENDIX A. JACOBIAN FUNCTIONAL DETERMINANT IN
ZERO SPACE DIMENSIONS

We are interested in evaluating the following functional determinant in
zero space dimensions

7 =det [(a,)n—‘z} (78)

If n> 1, from the general analysis given in ref. 7, we see

Sn=det(0,)" (79)
whereas for n=1, we get!”
dp 1dP
S =det(0,) exp < —0(0) d¢> — det(0,) exp < _2d¢> (80)

where we have adopted the prescription ©(0)=1/2.
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APPENDIX B. JACOBIAN FUNCTIONAL DETERMINANT FOR
THE REACTION-DIFFUSION-DECAY SYSTEM

For the reaction-diffusion-decay system F[@(X, )] = P(¢) is an ultra-
local function of ¢, most commonly a polynomial in ¢. Thus

OFTY(%, 0] _

54(7.1) P(¢(x)) o(X = y) o(1 —1') (81)

The relevant trace is given by”

Tt 6, 2L = 000) [t el P () 002 )]

o(¥)
— 0(0) 64(0) jd ¢dr P'(¢) (82)

In contrast to the Kardar—Parisi-Zhang equation,®® the Jacobian determi-
nant for the reaction-diffusion-decay system is not a field independent
constant, but (adopting the prescription @(0)=1/2) one has

fRDDzexp{ fd di P'(¢ } (83)

Thus for the reaction-diffusion-decay field theory the functional determi-
nant at worst leads to extremely simple Faddeev—Popov ghosts. There are
general arguments (see for example Zinn—Justin,®> pp. 373, 307, or related
comments in Itzykson-Zuber,®® p.448) to the effect that terms propor-
tional to (Sd(6) can always be safely discarded in dimensional regulariza-
tion. We do not want to step into the middle of this contentious issue and
merely note that we have found it more convenient to not adopt the formal
result 09(0) =0, and instead to explicitly carry the Jacobian along in the
calculation. Keeping the Jacobian explicit is essential to showing one-loop
finiteness in d=1 space dimension, a result that would otherwise be dis-
guised by unnecessarily discarding the precise counterterm needed to
ensure the one-loop finiteness of the theory.

This situation is in marked contrast to that for the KPZ system,®®
wherein the Jacobian determinant is a field independent constant irrespec-
tive of how one wishes to handle the formal result 6¢ (6) =0.
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APPENDIX C. FEYNMAN RULES FOR THE
REACTION-DIFFUSION-DECAY SYSTEM

We have derived the general form of the Feynman rules in the direct
formalism, applicable to arbitrary SPDEs, in ref. 7. There are a number of
technical simplifications for the reaction-diffusion-decay system which
make it worthwhile to present this particular case. From the reaction-diffu-
sion-decay stochastic differential equation (6)

0 =
S ) =P+ (84)

we deduce the characteristic functional (partition function)
2001=[190) /77 exp =3 [ 108 =¥ 9~ P9)) G,

<[00 = (V=) 4= 2] Jexp [ 191 (85)

from which we can immediately deduce the associated Feynman rules.
Note we have opted to collect whatever terms linear in ¢ there may be in
the reaction polynomial P(¢) and place them on the left hand side of the
equation. Compare to the Egs. (6) and (11) in the introduction: the decay
rate is simply y = vm? The functional determinant can either be calculated
from the preceding section, or it can be included as a Faddeev—Popov
ghost term, with the same effect. There is only one field propagator and
two vertices. The propagator is identical to the KPZ case, but the vertices
have as high an order as determined by the highest power in P (see below).
The following holds for translationally invariant noise.

These are the basic structures (in the interacting classical action) from
which one can derive the appropriate vertices by taking the corresponding
functional derivatives:

Propagator:

- G,(k, )
Ghaalk, ®) = 2
ralk, @) 2 + v (k? + m?)?

P(¢p) — ¢ vertex:

[P($)1(ky1, ) Ky, @) [ —icoy +v(K2Am®)] - -
(2m)d+1 G”(El,wl) O(ky+ky) 6(wy + wy)
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P(¢)— P(¢) vertex:

LLP@IK, 0)LPOI k2 02) 5 o5
2 Gk o)) e

For a polynomial P(¢) of order n, there will be up to 2n propagators meeting
at a vertex. Calculations with these Feynman rules involve fewer propagators
and vertices than those of the Martin-Siggia—Rose formalism.® ® The basic
trade-of is this: one reduces the number of propagators and vertices at the
cost of making the vertices more complicated. As long as one is interested
in one-loop physics this cost is not prohibitive,”” and the pay-off in terms
of ease of calculation for the effective action and effective potential is con-
siderable.

APPENDIX D. AN INTEGRAL

We want to demonstrate that

JHoda)ln

— o0

<a)2—22—_|— ie

— 3 >=2n(iiZ—Y) (86)

To see this note that

+ o0 wz—Zziie + o0 |w2_22| ) +Z
J‘ dwln<wz+yz>=j dwln(aw)imfzdw

— o0 — o0 —

v P2\
= J_OO dw In <M> +2niZ (87)

The remaining integral can be found in ref. 27, Egs. (2.736.1) and (2.733.1),
and we can finally write

+ o0 |Q)2—ZZ|
[ o ()

B |w?* — Z?| w+Z (o
_{wln<wz+y2 +Z1In - —2Ytan %
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APPENDIX E. THE ITO CALCULUS VERSUS THE
STRATONOVICH CALCULUS

In evaluating the Jacobian functional determinant one encounters a
factor of ©(0), which is ill-defined and must be specified by some prescription.
The prescription which is most useful in this context, and which we have
adopted in the bulk of this paper, is the symmetric prescription wherein
©(0) equals 3. This may be justified by a limiting procedure as described,
for example, in the text by Zinn—Justin®’ (Chapter 4, pp. 69-70.) The sym-
metric prescription is equivalent to adopting the Stratonovich calculus for
stochastic equations. Choosing @(0) =0 is equivalent to the Ito calculus.
The Ito calculus simplifies the Jacobian determinant (to unity) at the cost
of destroying equivariance under field redefinitions (the Ito calculus
explicitly breaks coordinate invariance in field space). See, for instance,
Eyink,"" or Zinn-Justin.®®> In this Appendix we sketch the modifications
required to implement the Ito calculus. These changes are straightforward
if at times tricky (the loss of reparameterization invariance under field
redefinitions implies that all arguments involving a change of variables
must be carefully re-assessed).

If we adopt the Ito calculus, then for any SPDE the (unrenormalized)
expression for the one-loop effective potential simplifies to

d% d
Viald o] =3 FAL81 45 | Gt
xln{<zﬁ(k(u) ﬁ;:><0(ian-—§g>
&F

+ &ak, ) F[¢] }—(¢—>¢o)+0(«9/2) (89)

0¢ o¢

[ Compare with Eq. (4).] When specialized to the reaction-diffusion-decay
system this further simplifies to

d¥k de

1
Tl d0] =3 L)~ PG 45 [ S0

i | DR = P(9)1 + &a(k, ) P($) P'(9)
@ + [VK* = P'(9o) 1> + Za(k. @) P(do) P"(d0)

+ 0(7?) (90)
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[ Compare with Eq. (19).] Further restricted to temporally white noise we
obtain

R 1 d¥%
Violdi bl =3 )43 | 5
x {Re[/[vk>— P'($)1% + &.(K) P(¢) P"($)]}

— (¢ = ¢o) + O(7?) (91)

[ Compare with Eq. (23).]

On the one hand, this looks like a tremendous simplification of Eq. (23).
On the other hand, the ultraviolet renormalizability properties are now
considerably worse. For instance, by inspection of the above it is easy to
see that one can no longer rely on a cutoff in the noise spectrum, gz(E), to
keep the effective potential finite. Instead a cutoff in the momentum integral
must be introduced by hand, complicating the process tremendously. Even
if g,(k)— 0 for large momenta, for d>0 there exists an UV divergence
proportional to A9[ P'(¢) — P'(¢,)]. For generic P(¢) this cannot be absorbed
into a counterterm in the zero-loop effective action. That is, adopting the
Ito calculus for the reaction-diffusion-decay system results in a theory that
is one-loop non-renormalizable for d >0, and so must be viewed as an
“effective field theory.”

Thus even for d=1, where the Stratonovich calculus leads to a one-
loop finite result, the Ito calculus leads to complicated expressions which
obscure the underlying physics. It is for this reason, (the complications of
dealing with non-renormalizable effective field theories), and the fact that
the Tto calculus is not invariant under field redefinitions, that we have not
further explored the Ito calculus in this paper.

The one case where the Ito calculus gives a simpler answer than the
Stratonovich calculus is for d =0, corresponding to stochastic mechanics
rather than stochastic field theory. In that case

Vol #; $o; d=01=3P*(¢) + 3/ (Re \/3[ PA$)]") — (¢ = ¢o) + O(/?)
(92)

Of course, one should not be alarmed that the Ito calculus and the
Stratonovich calculus give different intermediate results; they are different
theories. Because the Ito calculus is not invariant under field redefinitions
it is generally possible to find some choice of field variables (a reparam-
etrization) that makes the two systems agree with each other, but that
special set of field variables may not be the ones one naively started out
with.
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